Abdajabar A., Idbeaa, T. (2024). Cybercrime’s Threat to Financial Institutions During COVID-19. AlQalam Journal of Medical and Applied Sciences, 46–52.
Anderson R., Moore T. (2006). The economics of information security. Science, 314(5799), 610–613.
Aria M., Cuccurullo C. (2017). Bibliometrix: An R-tool for comprehensive science mapping ana- lysis. „Journal of Informetrics”, 11(4), 959–975.
Bakarich K.M., Baranek D. (2020). Something phish-y is going on here: A teaching case on busi- ness email compromise. „Current Issues in Auditing”, 14(1), A1–A9. https://doi.org/10.2308/ ciia-52706
Basu K. (2018). Markets and manipulation: Time for a paradigm shift? „Journal of Economic Literature”, 56(1), 185–205. https://doi.org/10.1257/jel.20161410
Bayl-Smith P., Sturman D., Wiggins M. (2020). Cue utilization, phishing feature and phishing email detection, [w:] Financial Cryptography and Data Security, FC 2020 (s. 56–70). Springer. https://doi.org/10.1007/978-3-030-54455-3_5
Bhatt P., Obaidat M.S., Dangwal G., Das A.K., Wazid M., Sadoun B. (2024). Machine learning-ba- sed security mechanism for detecting phishing attacks, [w:] 2024 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI) (s. 1–6). IEEE. https://doi. org/10.1109/CCCI61916.2024.10736460
Das S., Abbott J., Gopavaram S., Blythe J., Camp L. J. (2020). User-centered risk communication for safer browsing, [w:] International conference on financial cryptography and data security (s. 18–35). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030- 54455-3_2
Do N.Q., Selamat A., Krejcar O., Herrera-Viedma E., Fujita H. (2022). Deep learning for phishing detection: Taxonomy, current challenges and future directions. Ieee Access, 10, 36429–36463. https://doi.org/10.1109/ACCESS.2022.3151903
Donthu N., Kumar S., Mukherjee D., Pandey N., Lim W.M. (2021). How to conduct a bibliome- tric analysis: An overview and guidelines. „Journal of business research”, 133, 285–296.
Egelman S., Cranor L.F., Hong J. (2008). You’ve been warned: An empirical study of the effecti- veness of web browser phishing warnings. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1065–1074.
Grier C., Ballard L., Caballero J., Chachra N., Dietrich C.J., Levchenko K., …, Voelker G.M. (2010). Manufacturing compromise: The emergence of exploit-as-a-service. Proceedings of the 17th ACM Conference on Computer and Communications Security, 821–832. https://doi. org/10.1145/1866307.1866311
Herley C., Florêncio D. (2010). Nobody sells gold for the price of silver: Dishonesty, uncertainty and the underground economy, [w:] Economics of Information Security and Privacy (s. 33–53). Springer. https://doi.org/10.1007/978-1-4419-6967-5_3
Hong J. (2012). The state of phishing attacks. Communications of the ACM, 55(1), 74–81. https://doi.org/10.1145/2063176.2063197
Hornuf L., Kück T., Schwienbacher A. (2022). Initial coin offerings, information disclosure, and fraud. „Small Business Economics”, 58(4), 1741–1759. https://doi.org/10.1007/s11187- 021-00471-y
Jagatic T.N., Johnson N.A., Jakobsson M., Menczer F. (2007). Social phishing. „Communications of the ACM”, 50(10), 94–100. https://doi.org/10.1145/1290958.1290968
Khonji M., Iraqi Y., Jones A. (2013). Phishing detection: A literature survey. IEEE Communications Surveys i Tutorials, 15(4), 2091–2121. https://doi.org/10.1109/SURV.2013.032213.00009
Król P. (2024). Phishing jako zagrożenie dla bezpieczeństwa bankowości cyfrowej. „Bezpieczny Bank”, 94(1), 25–42. https://doi.org/10.26354/bb.2.1.94.2024
Krombholz K., Hobel H., Huber M., Weippl E. (2015). Advanced social engineering attacks.
„Journal of Information Security and Applications”, 22, 113–122. https://doi.org/10.1016/j. jisa.2014.09.005
Mutlutürk M., Metin B. (2023). Mapping The Phishing Attacks Research Landscape: A Biblio- metric Analysis And Taxonomy. „J. Theor. Appl. Inf. Technol”, 101, 6758–6780.
Mutlutürk M., Wynn M., Metin B. (2024). Phishing and the Human Factor: Insights from a Bi- bliometric Analysis. „Information”, 15(10), 643. https://doi.org/10.3390/info15100643
Mwavali A. (2024). Combating phishing in Kenya: A supervised learning model for enhanced email security in Kenyan financial institutions. „International Journal of Technology and Sys- tems”, 9(4), 23–36.
Nwafor K.C., Ikudabo A.O., Onyeje C.C., Ihenacho D.O.T. (2024). Mitigating cybersecurity risks in financial institutions: The role of AI and data analytics. „International Journal of Science and Research Archive”, 13(01), 2895–2910.
O’Leary D.E. (2019). What phishing e-mails reveal: An exploratory analysis of phishing at- tempts using text analysis. „Journal of Information Systems”, 33(3), 285–307. https://doi. org/10.2308/isys-52481
Olifer D., Goranin N., Kaceniauskas A., Cenys A. (2017). Controls-based approach for evaluation of information security standards implementation costs. „Technological and Economic Deve- lopment of Economy”, 23(1), 196–219. https://doi.org/10.3846/20294913.2017.1280558
Olowu O., Adeleye A.O., Omokanye A.O., Ajayi A.M., Adepoju A.O., Omole O.M., Chianumba E.C. (2024). AI-driven fraud detection in banking: A systematic review of data science approaches to enhancing cybersecurity. „Advanced Research and Review”, 21(2), 227–237.
Perwej Y., Abbas S.Q., Dixit J.P., Akhtar N., Jaiswal A.K. (2021). A systematic literature review on the cyber security. „International Journal of scientific research and management{, 9(12), 669–710.
Sahingoz O.K., Buber E., Demir O., Diri B. (2019). Machine learning based phishing detection from URLs. „Expert Systems with Applications{, 117, 345–357. https://doi.org/10.1016/ j.eswa.2018.09.029
Sheng S., Holbrook M., Kumaraguru P., Cranor L.F., Downs J. (2010). Who falls for phish? A de- mographic analysis of phishing susceptibility and effectiveness of interventions. „Proceedings of the SIGCHI Conference on Human Factors in Computing Systems”, 373–382.
Shkarlet S., Dubyna M., Zhuk O. (2018). Determinants of the financial services market functio- ning in the era of the informational economy development. „Baltic Journal of Economic Stu- dies”, 4(3), 349–357. https://doi.org/10.30525/2256-0742/2018-4-3-349-357
Taylor-Jackson J., McAlaney J., Ashenden D., Dale J. (2020). Incorporating psychology into cy- ber security education: A pedagogical approach, [w:] Financial Cryptography and Data Securi- ty, FC 2020 (s. 207–217). Springer. https://doi.org/10.1007/978-3-030-54455-3_15
Villanueva J., Sebastian J., Dextre J. (2024, July). Web Portal Validation Model by Digital Signa- ture and ISO 27002 to Reduce Private Credentials Theft for Phishing Attacks to Financial Sector Customers, [w:] 2024 International Conference on Electrical, Computer and Energy Technolo- gies (ICECET) (s. 1–5). IEEE.
Xiang G., Hong J., Rose C.P., Cranor L. (2011). CANTINA+: A feature-rich machine learning fra- mework for detecting phishing web sites. „ACM Transactions on Information and System Secu- rity”, 14(2), 1–28. https://doi.org/10.1145/2019599.2019606
Yuspin W., Putri A.O., Fauzie A., Pitaksantayothin J. (2024). Digital Banking Security: Internet Phishing Attacks, Analysis and Prevention of Fraudulent Activities. „International Journal of Safety & Security Engineering”, 14(6).
Zhuo S., Biddle R., Koh Y.S., Lottridge D., Russello G. (2023). SoK: Human-centered phishing susceptibility. „ACM Transactions on Privacy and Security”, 26(3), 1–27.