Hull J.C., Risk Management and Financial Institutions, John Wiley & Sons, Inc., New Jersey 2018
Śliwiński A., Ryzyko ubezpieczyciela i windykacja ubezpieczeniowa w: K. Kreczmańska-Gigol (red.), Windykacja należności, ujęcie interdyscyplinarne, Difin, Warszawa, 2011
Welfe A., Ekonometria, Polskie Wydawnictwo Ekonomiczne S.A., Warszawa, 2018
clustering approach, “International Journal of Knowledge Engineering and Data Mining”, vol.4, no.1, 2016
Arutjothi G., Senthamarai C., Assessment of Probability Defaults Using K-Means Based Multinomial Logistic Regression, “International Journal of Computer Theory and Engineering”, vol. 14, no. 2, 2022
Bijak K., Thomas L.C., Does segmentation always improve model performance in credit scoring?, “Expert Systems with Applications”, vol. 39, no. 3, 2012
Caruso G., Gattone S.A., Fortuna F., Di Battista T., Cluster analysis for mixed data: An application to credit risk evaluation, “Socio-Economic Planning Sciences”, vol.73, no. 100850, 2020
Gruszczyński A., Przeniesienie wierzytelności z umowy ubezpieczenia majątkowego, „Wiadomości Ubezpieczeniowe”, nr 2, 2018
Hubert M., Debruyne M., Minimum covariance determinant, “Wiley Interdisciplinary Reviews: Computational Statistics”, vol. 2., 2010
Huang Z., Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values, “Data Mining and Knowledge Discovery”, vol. 2, 1998
Idbenjra K., Coussement K., De Caigny A., Investigating the beneficial impact of segmentation-based modelling for credit scoring, “Decision Support Systems”, vol. 179, no. 114170, 2024
Jadwal P.K., Jain S., Gupta U., Khanna P., K-Means clustering with neural networks for ATM cash repository prediction w: S. Satapathy, A. Joshi, (eds) International Conference on Information and Communication Technology for Intelligent Systems, Springer, Cham, 2017
Jadwal P.K., Jain S., Gupta U., Khanna P., Clustered support vector machine for ATM cash repository prediction w: B. Pati, C. Panigrahi, S. Misra, A. Pujari, S. Bakshi (eds), Progress in Advanced Computing and Intelligent Engineering, Springer, Singapore, 2019
Jadwal P.K., Pathak S., Jain S., Analysis of clustering algorithms for credit risk evaluation using multiple correspondence analysis, “Microsystem Technologies”, vol. 28, 2022
Jamotton C., Hainaut D., Hames T., Insurance Analytics with Clustering Techniques, “Risks”, vol. 12, no. 9, doi: 10.3390/risks12090141, 2024
Kaminskyi A., Nehrey M., Clustering approach to analysis of the credit risk and profitability for nonbank lenders, CEUR Workshop Proceedings, Machine Learning Methods and Models, Predictive Analytics and Applications - 13th Workshop on the International Scientific Practical Conference Modern Problems of Social and Economic Systems Modelling, MPSESM-W, 2021, https://ceur-ws.org/Vol-2927/paper10.pdf [dostęp: 5.12.2024].
Kim B., A Fast K-prototypes Algorithm Using Partial Distance Computation, “Symmetry”, vol. 9, no. 58, 2017
Sala K., Przegląd technik grupowania danych i obszarów zastosowań, „Społeczeństwo i Edukacja”, vol. 25, nr 2, 2017
Saxena A., Prasad M., Gupta A., Bharill N., Patel O.P., Tiwari A., Joo E.M., Weiping D., Lin C.T., A review of clustering techniques and developments, “Neurocomputing”, vol. 267, 2017
Starosta W., Modelling Recovery Rate for incomplete defaults using time-varying predictors, “Central European Journal of Economic Modelling and Econometrics”, no. 12, 2020
Walesiak M., Procedura analizy skupień z wykorzystaniem programu komputerowego ClusterSim i środowiska R, „Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu”, nr 7 (1207), 2008
Wen Ch., Gao K., Xiao Y., Data-Driven Market Segmentation in Insurance Industry and Other Related Sectors, “Journal of Finance and Accounting”, vol. 9, no. 6, 2021
Wu S., Hu X., Zheng W. et al., Effects of reservoir water level fluctuations and rainfall on a landslide by two-way ANOVA and K-means clustering, “Bulletin of Engineering Geology and the Environment”, vol. 80, 2021
Zhang X., Yu L., Consumer credit risk assessment: A review from the state-of-the-art classification algorithms, data traits, and learning methods, “Expert Systems with Applications”, vol. 237 (A), 2024
Zhou L., Zhang N., Customer Segmentation and Optimal Insurance Compensation Ratio: Decision-making Analysis in Financial Institutions, “International Journal of Multimedia and Ubiquitous Engineering”, vol. 10, no. 8, 2015
Jia Z., Song L., Weighted k-Prototypes Clustering Algorithm Based on the Hybrid Dissimilarity Coefficient, “Mathematical Problems in Engineering”, 2020
European Central Bank, Guidance to banks on non-performing loans, 2017, https://www.bankingsupervision.europa.eu/ecb/pub/pdf/guidance_on_npl.en.pdf [dostęp: 5.12.2024].