S0 e 000 00
@9 0nseo0eocoe
R

® 8000000000
(8 9 0 00000 eoe

. o 0000 00
- & o 2 0 0" 08P

.

.

s
.
.
-
-
Ji
i

No 4(73) 2018 ISSN 2544-7068

BEZPIECZNY

BANK

BANKOWY
FUNDUSZ
GWARANCYJNY

ceevcsccescoses oo N
P9 00 00000000 DOS |



SAFE BANK is a journal published by the Bank Guarantee Fund since 1997. It is devoted to
issues of financial stability, with a particular emphasis on the banking system.

EDITORIAL OFFICE

prof. Jan Szambelanczyk - Editor in Chief
prof. Matgorzata Iwanicz-Drozdowska
prof. Ryszard Kokoszczynski

prof. Monika Marcinkowska

prof. Ewa Miklaszewska

prof. Krzysztof Opolski

dr Ewa Kulinska-Sadtocha

Ewa Telezynska - Secretary

SCIENTIFIC AND PROGRAMME COUNCIL

Piotr Nowak - chairman

prof. Paola Bongini

prof. Santiago Carbo-Valverde
prof. Dariusz Filar

prof. Eugeniusz Gatnar

prof. Andrzej Gospodarowicz
prof. Leszek Pawtowicz
Krzysztof Pietraszkiewicz
Zdzistaw Sokal

prof. Rafat Sura

All articles published in “SAFE BANK” are reviewed.
All articles present the opinions of the authors and should not be construed to be an official
position of BFG

PUBLISHER

Bankowy Fundusz Gwarancyjny
ul. Ks. Ignacego Jana Skorupki 4
00-546 Warszawa

SECRETARY

Ewa Telezynska
Telephone: 22 583 08 78
e-mail: redakcja@bfg.pl

DOM Desktop publishing:
WYDAWNICZY Dom Wydawniczy ELIPSA
ul. Inflancka 15/198, 00- 189 Warszawa

=
JE JIPSA[ m%eﬁgsa%? 01, e-mail: elipsa@elipsa.pl,




Safe Bank 4 (73) 2018

DOI: 10.26354/bb.3.4.73.2018

. *
Marcin Dec
ORCID 0000-0002-6220-8267

Stochastic Experiments in Stabilisation
of Money Market Benchmarks

Abstract

The main input of this research is a stochastic model of a theoretical panel of contributors
(banks) to a money market index. The model proved to constitute a useful environment for
testing various index formulae, their characteristics and some trade-offs that may arise while
deciding on the particular benchmark’s design. It may be also used to evaluate indices without
historical data or stress them against different scenarios of adverse changes in market condi-
tions or panellists’ behaviour. The hypothetical problems with changes in the panel’s composi-
tion as well as the irregularity of daily contributions may strongly influence the utility of a final
benchmark to be used in medium and long term loan contracts, especially with retail clients.
Our focus is on several selected classes of benchmarks’ formulae that are derived from the raw
index and allow for some confinement of the mentioned drawbacks while decreasing quality
measured by other criteria (the goodness of fit). The set of classes include: the geometric time
weights with different smoothing parameters and observation window’s length used on the
original raw index, stabilisation of the raw index in bands, rolling window volume weights re-
balancing and finally the geometric time weights performed on log-volume transformed index.
The potential trade-offs in such a benchmark’s stabilisation efforts are shown.

Key words: financial market indices, interest rate benchmarks, compound Poisson process,
index volatility reduction, transaction based benchmarks

JEL: G12, G17,E43

Eksperymenty stochastyczne w stabilizowaniu wskaznikéw
referencyjnych rynku pienieznego

Streszczenie

W artykule zaproponowano nowe podejscie do badania wskaznikdw referencyjnych rynku
pienieznego w postaci modelu stochastycznego opisujacego dynamike panelu bankéw prze-
kazujacych informacje o transakcjach depozytowych do pewnego repozytorium lub agenta
kalkulacyjnego.

*  PhD candidate at the SGH Warsaw School of Economics.
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Model wykorzystano do przetestowania réznych klas i formut matematycznych indekséw,
zbadania ich wilasnosci oraz wskazania rozwigzan technicznych skutkujacych zmniejsze-
niem ich zmiennosci. Srodowisko to moze by¢ z powodzeniem zastosowane takze to badania
indekséw, co do ktdrych dane historyczne sg mato dostepne lub nie istnieja. Potencjalne pro-
blemy wynikajgce ze zmian sktadu panelu a takze z nieregularnos$ci dziennych kontrybucji
danych panelistow do repozytorium istotnie wptywaja na jakos$¢ tworzonego wskaznika re-
ferencyjnego (benchmark-u), ktéry moze by¢ uzywany w $rednio- i dtugoterminowych kon-
traktach kredytowych (w szczegélnosci zawieranych przez banki z klientami detalicznymi).

Artykut zawiera klasyfikacje takich formut wyliczania wskaznikéw referencyjnych, ktére
skutkuja powstaniem wskaznika o mniejszej zmienno$ci niz dzienna $rednia wazona wolu-
menem (indeks ,surowy”). Zbiér rozwazanych klas obejmuje: indeksy wazone geometrycz-
nie wzgledem czasu z r6znymi parametrami wygtadzajacymi i r6znymi szeroko$ciami okna
obserwacyjnego, indeksy stabilizowane w przedziatach, indeksy zalezne od $rednich wag
w réznych okienkach czasowych oraz indeksy wazone geometrycznie wzgledem czasu opar-
te o przeksztatcony logarytmicznie indeks ,surowy” (wzgledem wolumenu transakcji depo-
zytowych). W ostatniej cze$ci oméwiono mozliwe wybory miedzy akceptowalnym pozio-
mem jakos$ci dopasowania nowego benchmarku do indeksu ,surowego” a jego zmiennoscia.

Stowa kluczowe: wskazniki referencyjne, rynek pieniezny, ztozony proces Poissona, reduk-
cja zmiennosci indeksu.

Introduction

At the present time, after so-called LIBOR scandal and its consequences, there is
a great debate on new money market benchmarks design. A comprehensive ove-
rview of the scandal with a special focus on the manipulation techniques and their
scale may be found in Duffie & Stein (2015, pp. 192-212) or Ghandi, Golez, Jac-
kwerth & Plazzi (2015). Details of this historical discussion are out of scope of this
research but it suffices to say that the key change of the paradigm proposed and
broadly agreed upon is that money market benchmarks should be real transaction
based rather than hypothetical questionnaire’s results averaging as it was and still
is the case. This thought is reflected in I0SCO (2013, chapter: Quality of the Bench-
mark) where one may read that, “The data used to construct a Benchmark should be
based on prices, rates, indices or values that have been formed by the competitive for-
ces of supply and demand and be anchored by observable transactions entered into at
arm’s length between buyers and sellers in the market [...] the Benchmark measures”.

Before the Benchmark reform (henceforth: BMR), the most popular money market
indices and therefore benchmarks were usually calculated on the basis of a set of
quotes given individually by a group of pre-agreed list of banks, called panel. The
size of a particular panel might depend on specific regulations, but it was unusual
to observe less than 8 and more than 30 banks in a panel. After the BMR reform,

1 EU Regulation 2016/1011 of the European Parliament and of the Council of 8 June 2016 on indices
used as benchmarks in financial instruments and financial contracts or to measure the performance
of investment funds.
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from qualitative view point, we may distinguish between the panel that contributes
non-transactional information (hypothetical quotes) to calculate an index and the
panel (probably much broader) of banks or other institutions which report their
real transactions to the calculation agent in order to determine a transaction-ba-
sed index. This research elaborates on the potential dilemmas one may have when
establishing rules of an index in the latter case. Since the BMR regulations do not
precisely define what means that than an index or benchmark is transaction-based,
leaving the final decision to national regulators, we have some degrees of freedom
in our exploratory analysis, i.e. dates of transactions taken into the consideration,
system of weights, other mathematical transformations of the original data.

The article 11 of BMR contains the following provision on input data: “[data] shall
be sufficient to represent accurately and reliably the market or economic reality that
the benchmark is intended to measure. The input data shall be transaction data, if
available and appropriate” We believe that a simple volume weighted average rate
calculated from contributed transactions from a certain day or period is the closest
representation of what one may call a transaction-based index. For that reason, we
treat this raw index as a benchmark in the horse-race of alternative index formulae
later in this paper.

Even without precise new recipes ready to be implemented now from the regula-
tory point of view, it is possible to consider some practical aspects that may arise
when dealing with a panel of banks contributing their real transactions to a reposi-
tory and calculation agent. Adding to dilemmas of benchmarks’ reform elaborated
by Mielus (2016) our main focus here is to propose a stochastic model of a panel
and list some solutions to potential prohibitive volatility of volume weights in such
benchmarks. We acknowledge that the proposed techniques are not the unique and
complete solution to the excessive volatility problem and there exists others i.e.:
longer rate adjustment periods.

The paper is organised as follows: in the first chapter we explain how to set-up
a stochastic model of a panel of contributors and propose some nomenclature ne-
cessary in the subsequent parts of this article, the second chapter consists of a se-
lection of important benchmark classes (from mathematical perspective) and their
generic characterisation. The third chapter proposes some measures of volatility
and tracking error which leads to two trade-off spaces we use in the following - the
fourth and fifth chapters, which present the details of the simulations, concluded
as well as a discussion on the results obtained. Finally, we conclude and suggest
further research on that topic.

1. Stochastic set-up of a panel
Let’s assume throughout this article that there exists a repository of all transac-

tions performed in the money market of a certain tenor (i.e. 3M), to which every
bank i € N in a chosen panel ¥ contributes its transactional deposit information
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(rates Fiie and volumes vi’j,t) on daily basis. We assume every bank may have M,
transactions to report on a certain day t and j € {1, .., M, } is a particular deal’s
counter in a day t of i-th panellist. Based on that information a hypothetical calcu-
lation agent works out the current benchmark value according to pre-agreed set of
rules and broadcasts it publicly.

For the sake of simplicity, we use daily aggregated amounts of different banks as
building blocks for a hypothetical index calculation, defined as follows:

E ru [Vl/l My
% V., = E Vi
M it . LJ,t

2 :j=l Vijt j=1

Furthermore we assume that the first simplest choice benchmark (which we use as
areference and starting point) would be a volume daily weighted average of rates -
raw index - defined as follows:

Ri,r =

raw __ i=1 Rl IV”

jV:l Vi

In asset markets this type of index is commonly referred to as a volume weighted
average price (VWAP).

With the aim of properly modelling a certain panel’s index behaviour, we may as-
sume now that the weighted rate R, , contributed on a day ¢ by the i-th panellist and
corresponding aggregated Volume V are both stochastic processes. We propose
the following approach:

1. there exists a notional market rate known to each panellist who sets its deposits
rates negotiation policy with reference to it. This market rate follows an arith-
metical Brownian motion process with some mean x,,,, and variance o, ,,, star-
ting at Rmkw;

2. the above-mentioned policy (V) is reflected in spreads s;, to the hypothetical

market rate, which also follow arithmetical Brownian motion processes with

means u . and variances Teprp starting at s, ,. We assume no correlation betwe-
enany o the Brownian motions;

hence the weighted rate may be described as: R, = Rmk” +S,5

4. each aggregated volume is normally dlstrlbuted with some y,,,; and variance

0,,,; Or follows compound Poisson process (of normally dlstrlbuted variables)
with parameter 1’2, For the sake of simplicity we define:

mkt’

w

P A" for compound Poisson volume processes
1710 otherwise

2 Defined as number of days with nonzero reported volume to all days in a specified interval.
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5. share of panellists with irregular volumes (compound Poisson) in the panel may
be treated as a deep parameter of the model y = y(%) € [0,1].

In this approach a panel 8 on a market is described by set of parameters:

= _ N N N N N N
= {N' e Iumkt’ O-mkt‘ Rmkt,O' (luspr,i =1’ (gspr,i =1 (Si,()] =1 (luvol,i =1 (O-vol,i =1 (/11) i=1

If we now imagine that each of the parameters may be also drawn from some distri-
butions (i.e uniform distributions over typical range a certain parameter is expec-
ted to be equal to) we may refer to such defined panel as a stochastic object (world)
which we will use in the Monte Carlo experiments described later. Technically, we
have to add two more parameters, namely: number of simulated panels S, and num-
ber of paths simulated for each panel S, hence we propose the following nomencla-
ture for a stochastic panel object: ‘BE‘SP‘ST and a stochastic panel’s instance after k-th
MC simulation3: B, sk

Such characterised stochastic panel has a structure a reach enough to accommodate
for some worlds that produce excessively volatile raw indices I[**, which creates
good grounds for testing alternative benchmarks’ formulae. Volatility of a raw index
may be high in this set-up due to:

1. high share (y) of panellists with irregular volumes;

2. high variances of spreads (aspm,) of the panellists with exceptionally high or low
staring spreads and trends (x,, );

3. high variances of volumes (o, ) of different panellists, especially the ones with
unusually high or low spreads to the hypothetical market rate;

4. high hypothetical market rate variance (o,,,)-

2. Benchmark’s classes

In this section we list and assess several classes of money market benchmarks wi-
thout an ambition of conducting exhaustive classification. These are examples of
some possible approaches to index stabilisation.

2.1. Time weighted indices

The first class builds on the idea of a moving average of a fixed length but uses
unequal time weights for different days inside the window. Usually, the fading mo-
notonic weights are chosen, meaning that today’s raw index has higher weight in
the benchmark than the oldest in a window, which in turn, leads to better articula-
tion of information ageing, where the latest information have substantially higher
impact on current value of an index than the distant (the oldest) ones. This method
obviously aims at benchmark’s volatility reduction with some costs in tracking er-
ror measure on the other hand. Particular selection of weights with a certain class is
a matter of choice in two-dimensional space (error measure vs volatility measure).

3 By simulation we mean here the set of paths simulated for all generated panels.
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2.1.1. Arbitrary weights

One possibility is that the final user (beneficiary) or its agent chooses a time win-
dow K and a set of weights:

= WS> w, > > > K-1 =
W ={Wg, Wy, ooy Wy oy Wi (i W Z W, Z e Z Wy, Z Wy AT Wy =1}

one thinks are appropriate for the usage in mind (i.e. W,_.={0.3,0.25,0,2,0.15, 0.1},
where the weight 0.3 corresponds to the most current observation).* Benchmark
formula of this class reads:

K-1
17 (Wy) = > wali™

d=0

Since this class suffers from infinite many degrees of freedom it is useless in contri-
buting to our research on trade-offs, but it leads to more compact class described
below.

2.1.2. Geometric weights

We may want to choose smoothing parameter 0 < o < 1 and the window size K
of our hypothetical benchmark to get the weights that are the result of a formula
evaluation with just these two parameters. With this aim we set the weights equal
to reversed geometric sequence and use a formula for the sum of finite geometric
series to get:

K—1 _ d+ 1

a=o 1 — (1 - a)Kil

raw
t—d

This class is easily implementable for simulations and may be used in experiments
when iterating over some space of smoothing parameter o € A and size of the
window K € K. Some examples of the weights’ structure depending on these two
parameters are shown in Figure 1 in Appendix. In our experiments we used the
following sets:

A ={0.01, 0.05,0.1,0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95}
K ={5, 10, 20, 40, 50, 60}

The lower a the smoother (flatter) weights it produces. As we will see the bench-
marks with high values of a have similar characteristics to the original raw index
they are derived from because the weights diminish rapidly within the given win-
dow as a day counter d increases.

4 Which was the case for the draft proposal of a benchmark derived from Polish money market reposi-
tory SMRP during working meetings held in 2018.
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2.2. Rolling window’s average weight indices

Another class arises from the concept of stabilisation of weights used in the calcu-
lation of raw index in a day. As in the previous class we choose some window size K
over which period we would like to stabilise volume weights. When on a certain
day there is no data to report from a contributor we simply have to reweigh the
scheme to include only the ones with nonzero contribution. It is sensible to choose
K> 252

min;A;
volume days in a business year consisting of 252 days. This condition’s satisfaction
would increase chances that at least one nonzero volume day of a certain contribu-
tor i occurred within the window frame and hence the effective weights are more
stable. Impact of a volatility of volume is therefore reduced as well. Mathematical
formula describing an index from this class follows:

N ‘
troll(K) — i:IRi”(Zs:t—KJrl Vis)

N t
i=1 23:’_K+1 Vi,sl{V,.n>¢0}

if the parameters A’ express a fraction of expected occurrences of nonzero

where 1 0 is an indicator function.

2.3. Indices based on logarithmic transformation of volume

Next idea of reducing the impact of huge swings in volume and impact of a one-off
massive transactions is to take logarithms® of volumes before plugging them into
raw index calculation:

Zjv: 1 Ri,t In Vi‘t

]ﬁ/l.mw —
N
i1 In V,',r

This trick yields in more equal treatment of every deal with less influence of trans-
acted volume (i.e. transacted volumes of 1.000.000 and 100.000 translate approxi-
mately into weights of 0.5454 and 0.4545). When implementing this transforma-
tion on real or simulated data, one should mind the fact that if the volume traded
falls into a band of [0,1] one shall apply some modification (i.e. flat cut-off at ) to
avoid negative volume weights.

It is reasonable to mix that class with geometric weights, potentially creating even
smoother and less volatile benchmarks:

[ln,geo(a K) —_ ’(21 a(l - a)d+l In,raw
t El -

=0 _(1_O()K71 e

5 Natural or decimal base logarithms would work equally efficient.



Safe Bank 4 (73) 2018 Problems and Opinions

2.4. Crawling band indices

The last (but certainly not least) class we are considering is based on the concept
of filtering the raw index within a given band width 2b. The iteration algorithm is
simple (T - set of counters in the time series):

1. start [“(b) = I

2. forallt+i € T:
if: (11 > IS (b) + boor I35 < IS (b) — b) then: 147 (b) = I}%,
else: /4 (b) = I'"  (b)

Because a band width choice is solely the final user’s arbitrary decision we may
argue that this kind of filter may be applied without any supervising authority, pro-
vided that the underlying raw index is a benchmark according to BMR regulations.
Once crawling band class index is implemented we will have a piecewise constant
benchmark, visually less volatile but if standard deviation is applied as a volatility
measure it is easily verifiable that in fact it is on the contrary.

3. Measures of volatility and tracking error

The main assumption for further analysis and experiments is that the raw index
calculated daily from volume weights is too volatile from a hypothetical user’s
perspective, be it a trader in a bank or a borrower with indexed loan to that raw
benchmark. It is obvious that any stabilisation of a raw index (starting with simple
moving averages) will decrease volatility of a new benchmark and increase its trac-
king error measure to the original raw index. In this section we define the spaces of
these trade-offs.

Naturally, first choice of a volatility measure is a standard deviation, especially from
financial derivatives traders’ point of view. Indices that have very low standard de-
viation (basically fixed for a long time) tend not to attract attention of traders as
they supposed to make money from the realised volatility. On the other hand, extre-
me and ephemeral spikes in standard deviation of an underlying instrument also
bode ill for trading development, because of lack of homoscedasticity in the index
process.

In our experiments we will use classical standard deviation (SD) measure calcula-
ted for the longest possible common calendar window for the whole group of alter-
native benchmarks we will be testing.

From the perspective of a borrower standard deviation is not the best measure of
volatility it cares about. We may assume that the index of its choice would be the
one that is semi-fixed in some longer than one day periods. That would not only
increase predictability of financial costs in the first loan period for the borrower,
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but also limit the feeling that index is a draw from a lottery, hence random and po-
tentially questionable. We believe that one of the measures such as an index the
user would consider is a mean absolute change (MAC) of a benchmark /; as defined
below:

+K-
MAC(I: 1.t + K]) = % S n -
One of the possible cost measures of our benchmark’s stabilisation efforts may be
a mean absolute error (tracking error), formula for which is proposed below.

MAE(Is,[tt+K)— Z\I—I"‘W\

The natural expectation is that the longer the period we are averaging over, the
higher MAE of our index because it is not responding to much more volatile raw
index, hence the absolute error cumulates. We follow findings of and use MAE as
more natural and unambiguous measure of average error, skipping RMSE (root-me-
an square error).

We propose to compare the results of Monte Carlo simulations of different bench-
marks’ characteristics in two simple pairs: mean absolute error against standard
deviation and mean absolute error against mean average change. We expect that
the plots of average values of the measures used (MAE, SD, MAC) in these two pa-
ired spaces exhibit downward slope, hence allowing for an introduction of an opti-
mal trade-off sets concept. An index belongs to that set if there is no better index in
that space, were by better we mean the one with smaller volatility measure value
and smaller tracking error measure than all the other indices in that particular spa-
ce. Formal definition of the optimal set 0, for a given list of tested indices J and
stochastic panel ‘B~5 s 1S proposed below:

Oy gmuesp =1L € J: 3 s.t. MAE(I') > MAE(I') A SD(I') > SD(I')}

and

Oy gamemac = I € J: 31 s.t. MAE(I') > MAE(I') A MAC(I') > MAC(I')}

where MAE, MAC, SD are averages over their underlying values in S, simulations of
panel’s B_ $pS; characteristics with S, path simulations for each panel drawn.
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4. Monte Carlo experiments set-up

In our experiments we have taken into consideration the following set of bench-
marks J from five classes we discussed in Chapter 2:

1. raw index RWA®

2. arithmetical mean of contributed rates from a certain day A4

3. from arbitrary weights: SMRPindx with W = {0.3, 0.25, 0.2, 0.15, 0.1}

4. from geometric weights: 10 indices of a form G_K:a with window sizes:

Ke X ={,5,5,55,10, 20, 40, 50, 60} and smoothing parameters:
o € A={0.9,0.8,0.7,0.6,0.01,0.01,0.01, 0.01, 0.01, 0.01} respectively’

5. from mixture of geometric weights with logarithmic transformation of volumes:
6 indices of a form L_K:a with window sizes: K € X = {5, 10, 20, 40, 50, 60} and
one smoothing parameter: a = 0.01 respectively®

6. from rolling window’s average weights: 6 indices of a form M_K with window
sizes: K € K ={5, 10, 20, 40, 50, 60} respectively9

7. from crawling band indices: 3 indices of a form S_b with half-band sizes b € B =
{0.0005, 0.001, 0.002}1°

8. raw index on log-transformed volumes RWAlog.

As we wanted to perform simulations within reasonable time'l, we have chosen
number of panels randomly generated from stochastic object $E,SP,ST tobe 5,=100,
with S, = 2500 paths (one business year long - 252 timesteps per year) simulated
for each panel.!?

We have used two sets of meta-parameters =, and =, which deliberately differ from
each other but the treatment of parameter 4 responsible for the volume frequencies
and indirectly for the share of irregular contributors in a panel. The set of common
meta-parameters for both = and their corresponding uniform distributions’ para-
meters were:

1. number of contributors: N ~ U(5, 20)
2. hypothetical market rate behaviour:
Uy ~ U(-0.01, 0.01), 5, ~ U(0.001, 0.004), R
3. contributors’ spread to market behaviour:
(,uspr,i)’;’=1 =101, (o, )., ~U(0.001, 0.008), (si_o)f;’=1 ~U(-0.0035, 0.0035),

spr,i/ i=

mico ~ U(=0.015,0.1),

4. contributors’ volumes behaviour:
(e, )Y ~U(500,10000), (¢, , )Y, ~ U200, 3000),

vol,i/ i=1 vol,it i=1

As defined in point 1. Stochastic set-up of a panel.

7 Referred to as: G_5:0.9, G_5:0.8, G_5:0.7, G_5:0.6, G_5:0.01,G_10:0.01, G_20:0.01, G_40:0.01, G_50:0.01,

G_60:0.01.

8 Referred to as: L_5:0.01, L_10:0.01, L_20:0.01, L_40:0.01, L_50:0.01, L_60:0.01.

9 Referred to as: M_5, M_10, M_20, M_40, M_50, M_60.
10 Referred to as: S_0.0005, S_0.001, S_0.002.
Approximately 1 hour per stochastic panel on a standard Intel Core i7 machine.

Implementation in Python with Numpy and Scipy modules.
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where U(a, b) is a cdf function of uniform distribution in the range [a, b]. In the
set Z, we used (2,); ~ U(52, 1095), which translates to = 30% share of irregular
contributors and in the set £, we took (’11')1;]:1 = [0] to represent a stochastic panel
with regular (daily) contributors only. The particular choice of meta-parameters’
ranges used in uniform distributions above is driven by common sense and market
behaviour hence it has no major impact on the results and findings in this research.
Several other ranges have been tested, including, but not limited to, allowing for de-
eply negative rates (by setting negative trend and simulation’s starting points of in-
terest rates). Although, it is worth underlying that the higher the share of irregular
contributions in a panel the more pronounced the effects described in the following
chapter would become.

Results

The results of such set Monte Carlo experiments are listed in Table 1 and presented
in Figures 2 to 5 in the Appendix. For the first list of meta-parameters we have the
following optimal set in MAE x SD:

0552, 10000, zsp = (RWA, Gg: 0.9, Gz 0.8, G 0.7, G2 0.6, G 0.01, Gy 0.01,
Gyy: 0.0, Gop: 0.01, Gyy: 0.01, Ly 0.01, Ly 0.01, Mo, My g, Myg, Mg, Mag, My}

Hence, we have 18 out of 29 tested indices in the optimal set constituting a trade-off
space for choices between volatility and tracking error for the benchmark potential
user and beneficiaries. The dominated indices here are:

{AA, RWAlog, SMRPindx, G: 0.01, Lg: 0.01, L,: 0.01, L, 0.01, Lg,: 0.01,

S S

0.0005’ ©0.001” 50.002}

Interestingly, the fact that crawling band indices seldom change does not translate
into lower standard deviation, because quadratic function involved in its calcula-
tion is convex. Also majority of the smoothed log-volume weighted indices lay outsi-
de the optimal set. It is worth mentioning at this stage that the choice of smoothing
parameters in geometric weights classes is intended to frugally include only the
indices that lead to meaningful results. There was no point of including whole range
of high a parameters into longer and longer windows because they produce pret-
ty much the same results in that space. Extending window frame length for highly
skewed (towards latest observation) time weights does not change dramatically the
value of an index nor its volatility nor tracing error. Only much smoother weighting
schemes (i.e.: a < 0.05) differentiate the results when time windows are longer.

For the stochastic panel with no irregular contributors (Z,) in the same space
MAE x SD the optimal set is exactly the same although the position of the whole set
is parallel shifted to the left (Figure 6 in the Appendix]).
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In the MAE x MAC space the size of the optimal set is larger by 3-4 items, leaving
behind only:

{AA, RWAlog, SMRPindx, Lg: 0.01, L, 0.01, S, 01 Sy 005 for =, and:
{AA, RWAlog, SMRPindx, Lg: 0.01, L, 0.01, Sy 0005 So.001> So.002) O Z,s-

The comparison of the two optimal sets in this space is slighly different than in
MAE x SD. The indices with longer window size than 10 seem to produce very alike
results, whereas smaller window indices show much higher differentiation.

Conclusions and further research

In general, greater window size results in some standard deviation’s reduction in
all contemplated indices, whereas mean average change is reduced much quicker,
reaching an area in which further increase of K does not yield in volatility decrease
but the error is growing faster. That area falls into K € [10, 20].

The indices based on log-volume transformed weights with geometric smoothing
rarely belonged to optimal sets in our experiments, usually being dominated by
some member of pure geometric weight indices with a longer window and the
same smoothing parameter. It is worth mentioning that log-volume transformation
always helped to reduce volatility measure values, but at a cost that forced these
benchmarks outside an optimal trade-off sets.

The crawling band indices examined in the two trade-off spaces did not provide
encouragement for their extensive usage, as they do not help to reduce standard
deviation (in fact they increase it) and their help in reducing MAC is significant, but
not enough to beat other indices from other classes.

The rolling window’s average weight benchmarks proved to be promising, as they
usually were members of our optimal sets beating arbitrary weight index (SMRPindx),
but the increase in window size did not translate into major SD or MAC reductions.

The effective choice of benchmarks within the optimal trade-off sets depends on the per-
spective and the objectives of a final beneficiary i.e. trader in a bank hedging its funding
costs, a retail mortgage borrower on a floating reference rate or even the monetary and
regulatory authorities. We proposed flexible environment to test benchmark formulae in
hypothetical panel’s combinations. Using that set-up, we are able to tell if we have found
optimal benchmark within contemplated list or not. Having the optimal trade-off, sets
we may try to compare it with some budget line i.e. slope of cost to volatility trade-off
which should yield in finding one benchmark given our preferences is optimal.

Further research may be also conducted when experimenting with correlation be-
tween Brownian motions in the stochastic panel model (between spreads and volu-
me) as well as micro-modelling the transactions within one contributor’s data. The
real data from a deposit rate repository would also give rise to further calibration
of stochastic panel model.
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Appendix

Figure 1. Geometric weights’ structure depending on parameter o and window size K
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Table 1. Results of Monte Carlo experiments with stochastic panels ‘3 21,1002500 and

for a set of indices J

£5,100,2500

g‘BE'I,IO(),ZSOO,i:l ‘BEI,IOO,ZSOOJ:Z G‘BEZ,IOO,ZSOO,i:l $52,100,2500,i=2
SD MAE MAC MAE SD MAE MAC MAE
AA 0.0015674 | 0.0007588 | 0.0001472 | 0.0007717 | 0.0014173 | 0.0006026 | 0.0001518 | 0.0006101
RWA 0.0017518 | 0.0000000 | 0.0006831 | 0.0000000 | 0.0015132 | 0.0000000 | 0.0004579 | 0.0000000
RWAlog 0.0016193 | 0.0005586 | 0.0003729 | 0.0005594 | 0.0014211 | 0.0005019 | 0.0001781 | 0.0005063
SMRPindx | 0.0016210 | 0.0005356 | 0.0001756 | 0.0005298 | 0.0014434 | 0.0003801 | 0.0001276 | 0.0003790
G_5:0.9 0.0017246 | 0.0000678 | 0.0005872 | 0.0000674 | 0.0014991 | 0.0000449 | 0.0003961 | 0.0000445
G_5:0.8 0.0017016 | 0.0001295 | 0.0005033 | 0.0001287 | 0.0014870 | 0.0000864 | 0.0003411 | 0.0000857
G_5:0.7 0.0016816 | 0.0001865 | 0.0004281 | 0.0001854 | 0.0014762 | 0.0001254 | 0.0002916 | 0.0001244
G_5:0.6 0.0016641 | 0.0002396 | 0.0003608 | 0.0002381 | 0.0014668 | 0.0001621 | 0.0002472 | 0.0001610
G_5:0.01 0.0016191 | 0.0004689 | 0.0001573 | 0.0004645 | 0.0014422 | 0.0003282 | 0.0001160 | 0.0003271
G_10:0.01 | 0.0015864 | 0.0005462 | 0.0000884 | 0.0005373 | 0.0014200 | 0.0004023 | 0.0000702 | 0.0004038
G_20:0.01 | 0.0015513 | 0.0006529 | 0.0000535 | 0.0006354 | 0.0013902 | 0.0005113 | 0.0000462 | 0.0005182
G_40:0.01 | 0.0015018 | 0.0008312 | 0.0000360 | 0.0007981 | 0.0013425 | 0.0006893 | 0.0000335 | 0.0007078
G_50:0.01 | 0.0014811 | 0.0009132 | 0.0000326 | 0.0008727 | 0.0013218 | 0.0007686 | 0.0000309 | 0.0007930
G_60:0.01 | 0.0014625 | 0.0009918 | 0.0000304 | 0.0009440 | 0.0013028 | 0.0008433 | 0.0000292 | 0.0008737
L_5:0.01 0.0015706 | 0.0006675 | 0.0001002 | 0.0006669 | 0.0014061 | 0.0005499 | 0.0000726 | 0.0005570
L_10:0.01 | 0.0015530 | 0.0007150 | 0.0000627 | 0.0007101 | 0.0013929 | 0.0005905 | 0.0000523 | 0.0006012
L_20:0.01 | 0.0015268 | 0.0007953 | 0.0000425 | 0.0007817 | 0.0013686 | 0.0006655 | 0.0000391 | 0.0006834
L_40:0.01 | 0.0014832 | 0.0009465 | 0.0000315 | 0.0009158 | 0.0013252 | 0.0008059 | 0.0000308 | 0.0008378
L_50:0.01 |0.0014642 | 0.0010197 | 0.0000293 | 0.0009807 | 0.0013057 | 0.0008726 | 0.0000290 | 0.0009115
L_60:0.01 |0.0014468 | 0.0010912 | 0.0000277 | 0.0010442 | 0.0012878 | 0.0009372 | 0.0000277 | 0.0009829
M_5 0.0016316 | 0.0004254 | 0.0002155 | 0.0004253 | 0.0014550 | 0.0002738 | 0.0001836 | 0.0002704
M_10 0.0016121 | 0.0004519 | 0.0001744 | 0.0004519 | 0.0014461 | 0.0002893 | 0.0001640 | 0.0002857
M_20 0.0016019 | 0.0004644 | 0.0001607 | 0.0004644 | 0.0014414 | 0.0002962 | 0.0001581 | 0.0002925
M_40 0.0015967 | 0.0004704 | 0.0001567 | 0.0004703 | 0.0014391 | 0.0002995 | 0.0001565 | 0.0002956
M_50 0.0015958 | 0.0004716 | 0.0001562 | 0.0004715 | 0.0014387 | 0.0003001 | 0.0001563 | 0.0002962
M_60 0.0015951 | 0.0004724 | 0.0001559 | 0.0004723 | 0.0014384 | 0.0003005 | 0.0001562 | 0.0002966
S_0.0005 |0.0017528 | 0.0001196 | 0.0005689 | 0.0001194 | 0.0015149 | 0.0001460 | 0.0003239 | 0.0001464
S_0.001 0.0017591 | 0.0003248 | 0.0003913 | 0.0003259 | 0.0015260 | 0.0003509 | 0.0001761 | 0.0003522
S_0.002 0.0017960 | 0.0006924 | 0.0001776 | 0.0006896 | 0.0015640 | 0.0006903 | 0.0000646 | 0.0006929

Source: Own elaboration
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Figure 2. Trade-off space MAE x SD of stochastic panel 3 _
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Figure 3. Trade-off space MAE x SD of stochastic panel 3
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Figure 4. Trade-off space MAE x MAC of stochastic panel 3 _
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Figure 5. Trade-off space MAE x MAC of stochastic panel 3
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Figure 6. Optimal sets compared in MAE x SD space
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Figure 7. Optimal sets compared in MAE x MAC space
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