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Abstract

The article presents the theoretical background of ruin theory and the description of the 
classical model for the insurer’s surplus. Analytical calculations of the ruin probability are 
presented for special cases of single loss distribution (exponential, gamma and a mixture 
of exponential distributions). The main focus is on the analysis of available methods for 
approximation of the ruin probability in an inϐinite horizon in continuous time model. 
The quality of approximation is tested by comparing the approximated ruin probability 
with the probability determined analytically (if possible) or estimated numerically using the 
Pollaczek-Khinchin formula. The approximation errors (in both absolute and relative terms) 
are shown for selected light-tailed distributions (mixture of exponential distributions, gamma) 
and heavy-tailed distributions (Pareto, lognormal, Weibull and Burr). The goal of the article 
is the assessment of the possibility to use the approximation methods for ruin probability by 
insurance companies, including areas such as pricing or solvency, especially in the context of 
Solvency II regime. The conducted analyses show that in most cases approximation results 
are quite satisfactory (relative error not exceeding 5%) and the lowest errors are observed 
for Cramer-Lundberg and De Vylder approximations in case of light-tailed distributions 
and for Beekman-Bowers and De Vylder approximations in case of heavy-tailed distributions. 
The approximation quality, measured with relative error, in general deteriorates in line with 
the decreasing assumed ruin probability, especially for heavy-tailed distributions.
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Introduction

The activities of ϐinancial institutions, such as insurance companies and banks, 
inevitably involve risks, which can take various forms. In the case of a bank, it is mainly 
ϐinancial and credit risk; in the case of an insurance company, insurance risk, related 
to the course of claims among insured persons, plays an important role. Key to the 
management of an insurance company is the quantiϐication of risk and maintaining it 
at an appropriate level, consistent with the so-called risk appetite. The realization of 
insurance risk can carry serious consequences, even leading to the bankruptcy of the 
company. For this reason, supervisory authorities in many countries issue a number 
of regulations aimed at minimizing the risk of bankruptcy, including the need to 
calculate so-called solvency requirements. In the European Union, solvency issues are 
regulated by the EU Solvency II Directive, which came into force on January 1, 2016. 
According to this directive, entities must calculate the Solvency Capital Requirement 
(SCR) and the Minimum Capital Requirement (MCR). The SCR corresponds to the 
value at risk of an insurance company’s basic own funds at a conϐidence level of 99.5% 
over a one-year period, and is calculated taking into account six risk modules (market, 
counterparty default, health underwriting, life underwriting, non-life underwriting, 
intangible assets), operational risk, and an adjustment for the loss-absorbing capacity 
of technical provisions and deferred income taxes.

In addition to calculating the solvency requirement to meet regulatory requirements, 
insurance companies also use other measures that can help manage risk. One such 
measure is the ruin probability, which can be calculated for a speciϐic portfolio of 
insurance contracts and tells how much the probability is that over a certain time 
horizon (ϐinite or inϐinite) the total value of claims will exceed the total value of premiums 
plus the so-called initial surplus, i.e. the insurance company will be ruined. Ruin theory 
provides useful mathematical tools for quantifying the risks faced by a company. In 
many cases, however, the exact calculation of the ruin probability is difϐicult or even 
impossible, and approximations are necessary. Assessing the possibilities of using 
various approximation methods is the main objective of this article. It is divided into two 
parts: the ϐirst part presents an introduction to the ruin theory, its selected properties, 
as well as limitations and difϐiculties. Finally, the so-called classical model is derived, 
along with its application to several probability distributions of the loss amount with 
explicit analytical formulas. The second part reviews selected approximation methods 
for the model with continuous solvency control over an inϐinite time horizon and their 
empirical results using selected examples. It concludes with an assessment of the 
feasibility of using the ruin theory and methods of approximation of ruin probability 
by insurance companies in areas such as pricing, risk management and in the context of 
Solvency II regime requirements.
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1. Ruin Theory – general theory

1.1. Basic concepts. Continuous insurer’s surplus model

In the literature, ruin theory is an essential tool for systematically monitoring the 
long-term performance of an insurance company. Its analysis should begin by 
deϐining the concepts that form the basis for further consideration. Conceptually, 
the theory focuses on the fact that insurance companies in the basic scope of 
their activities experience cash ϐlows in two directions. Inϐlows are income from 
collected premiums, while the source of the outϐlows is the amount of claims paid. 
This ignores the activity of insurance companies in all other areas (e.g. investment, 
deposits), as well as other sources of costs (administrative, acquisition, other 
operational, etc.). The difference between collected premiums and paid claims in 
a given time period is called the surplus – we understand a negative surplus as 
a deϐicit. We further assume that the insurance company has some initial surplus 
at the start, enabling it to begin providing services. In the model deϐined in this 
way, we focus exclusively on cashϐlows related to technical activities, focusing our 
attention on the occurrence of the risk diversiϐication1 effect in the time dimension. 
The mathematical representation of the above description is the long-term surplus 
process (amount of own funds) of an insurance company, which is the following 
function of time:

 U(t) = u + ct – S(t) (1)
where:
t ≥ 0 – the variable expressing consecutive time units,
u ≥ 0 – initial surplus of the insurance company at time t = 0,
c ≥ 0 – premiums collected in a time unit,
U(t) – the value of the process at time t,
S(t) = Y( )

ii

N t

1=
/  – the total value of compensation payments for claims incurred in the 

period (0, t],
Yi – the value of compensation payments from a single claim,
N(t) – number of claims incurred in the period (0, t].

In the model, we assume that all claims Yi come from the same probability 
distribution and are mutually independent. The process of occurrence of claims 
N(t) is also independent of their value. It does however depend on the number of 
insured risks. It should be noted that the model is characterized by dual randomness, 
i.e., we are dealing with a  random number of claims: N(t) – with random amounts of 
compensation: Yi. 

1 Diversiϐication effect is one of the key concepts in the insurance industry. According to the statutory 
deϐinition, it is: “the reduction in the risk exposure of insurance and reinsurance undertakings and 
groups related to the diversification of their business, resulting from the fact that the adverse outcome 
from one risk can be offset by a more favourable outcome from another risk, where these risks are not 
fully correlated”; In ruin theory, one may understand the diversiϐication effect as the ability to offset 
losses incurred in one of the reporting periods in future periods.
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Insurer ruin (the event of insolvency) is deϐined as the ϐirst moment of time at which 
the surplus process presented in equation (1) takes negative value

 T  inf (t ≥ 0: U(t) < 0). (2)

Then, at ϐinite t we consider the ruin probability on a finite time horizon 
(speciϐically, over a time segment of length (0, t)), deϐined as following (Otto 2008):

 . (3)

In contrast, when time tends to inϐinity, we speak of ruin probability in an infinite 
time horizon, deϐined below (Otto 2008):

 . (4)

The presented formulae, encapsule the so-called continuous model of insurer surplus, 
which assumes that the insurer is subjected to solvency control at every moment of 
the process, and the ruin of the undertaking is unambiguously determined by the ϐirst 
moment when the value of the process becomes negative. Figure 1 shows an example 
of the surplus process in a model with continuous solvency control.

Figure 1. Example insurer surplus process U(t) in a model with continuous solvency control
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Source: Own study.

The x axis represents time, while the y axis is the initial surplus. In the presented 
example, the process begins with an initial surplus of u = 10. It is worth noting the 
constant intensity of the premium inϐlows, which in the graph is represented by 
a constant slope in the intervals when the function is increasing (between individual 
claims). The sudden decreases in the value of the function present the moments of 
payment of individual claims. The moment T c 38 (time in this model is a continuous 
variable with inϐinite divisibility) is the moment of ruin, as the ϐirst drop below 
zero occurs here. The occurrence of ruin does not necessarily mean that a company 
becomes bankrupt. Ruin only reϐlects a negative result on pure technical activity, 
ignoring all other economic activities of the insurance company (costs and proϐits).
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1.2. Classical model. Adjustment coefϐicient. Lundberg’s inequality

The classical model in ruin theory is constituted by further assumption of an 
exponential distribution of intervals between consecutive claims. Following 
this assumption, one can prove that the number of claims in a time unit follows 
a Poisson distribution. Then the process of occurrence of claims N(t) satisϐies the 
assumptions of a Poisson process (with independent and stationary increments), 
while the S(t) component appearing in equation (1), representing the total value 
of claims in a given period, is given by a compound Poisson distribution with 
parameters (λt, Fy), i.e.: S(t) = ( )

i

N t

1=
/ Yi +CPoisson(λt, Fy), where Fy is the cumulative 

distribution function of the value distribution of a single claim (Niemiro 2013). The 
assumptions of mutual independence of the amounts of individual claims Yi and 
their independence from the variable N(t) remain in force.

Modifying the notation of the classical surplus process, it is possible to make 
elementary conclusions about the premium in the classical model. The ϐirst step is 
to divide the process into individual segments until the next of the k claims occurs:

  (5)

where:

Wk = Tk – Tk–1 +Exp(λ) – the time interval between consecutive claims is described 
by an exponential distribution,

E(Wk) = 1–λ ,
T0 = 0,
E(Yk) = μ.

Then the process is represented by: unchanged initial surplus (u), while each 
segment (cWk – Yk) represents the surplus between the premium obtained from the 
time of the (k–1)-th claim, until the k-th claim. Moreover, we know that all claims 
follow the same distribution. Thus, the expected value of the excess premium over 
a single claim is:

 . (6)

It can be noted that if the surplus is negative (collected premiums are less than the 
expected value of claims), ruin occurs with probability equal to 1 – this follows from 
the strong law of large numbers (Szekli 2012).

 If  then   (7)

This condition thus formally determines the intuitively obvious property that the 
premium must satisfy – it must exceed the expected value of claims paid.

 c > μλ (8)
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The premium is also often written with an additional factor representing the so-
called safety loading. The premium is then determined as the expected claims 
payment scaled by the mentioned safety loading factor θ > 0. 

 c = (1 + θ)μλ, θ > 0 (9)

The positive sign of the θ coefϐicient is a necessary condition to avoid ruin. In 
practice, insurance companies want the ruin probability to be low and oscillate 
within the (tolerable) limits of zero.

Essential to determine and/or approximate the ruin probability is the so-called 
adjustment coefficient. By introducing the safety loading coefϐicient, we can deϐine 
the adjustment coefϐicient as the positive root of the equation (Kaas et al. 2009):

 1 + (1 + θ)μ Ȋ r = Mx(r), (10)

where Mx(r) – moment-generating function (later abbreviated MGF).

The coefϐicient forces the existence of the moment-generating function of the loss 
distribution, and replicates the assumption of premiums exceeding the expected 
value of the loss amount (otherwise there is no positive solution to the equation). 
Under these assumptions, we know that the adjustment coefϐicient is uniquely 
determined, which ϐinds its elegant graphical interpretation (Figure 2). The left-
hand side of equation (10) is a linear function of variable r with slope (1 + θ)μ and 
intercept 1. The right-hand side – Mx(r) is a convex function on the interval (0, ∞) 
– this is determined by the sign of the second derivative – M''x(r) = E(X2erX) > 0. 
Moreover, the ϐirst derivative of the MGF at 0 is less than the slope of the left-hand 
side of the equation, M'x(0) < (1 + θ)μ. This implies that the graphs of both sides of 
the equality must intersect at exactly one point on the positive half-axis, uniquely 
determining the adjustment coefϐicient.

Figure 2. Uniqueness of existence of the adjustment coefficient 

mX(r)

1 + (1 + θ)μ1r

rR0

Source: Kaas et al. 2009, 92.

With the coefϐicient R at our disposal, we can ϐinally establish the formula for the 
ruin probability in the classical model (Grandell 1991):
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 . (11)

Unfortunately, its practical use tends to be problematic. Particular difϐiculties 
are posed by the denominator of the right-hand side of the equation, where it is 
necessary to calculate the conditional expected value of a process surplus function 
given the ruin actually occurs. In essence, this is a moment-generating function 
of the distribution of the amount of deϐicit at the time of the occurrence of a loss, 
which is not explicitly known. Calculating this expression in general is difϐicult, often 
requiring solving differential equations or using the Laplace transform (Shortle 
et al. 2003). Taking this into consideration, using reasonable approximations/
constraints is common practice. Lundberg’s inequality is one of the most popular 
upper approximations of the ruin probability. It can be justiϐied by a very simple 
observation: if ruin occurs, then by deϐinition the surplus process reaches a negative 
value (otherwise there is no ruin). Thus, the denominator of the formula for the ruin 
probability has to be greater than or equal to 1:

  (12)

which leads to the conclusion:

 . (13)

Thus, one can essentially omit the denominator of the equation (assuming an 
extremum of 1 as its value), which must be greater or equal to 1. It is clear that 
in practice such an estimate can lead to a signiϐicant overestimation of the ruin 
probability if the actual value of the denominator is signiϐicantly larger than 1.

1.3.  Classical model with loss amount distributions: 
exponential, n-exponential, gamma

The classical model imposes strict assumptions related to the timing of claims. 
However, the distribution of the loss amount itself remains free. We know from 
the formulae for the adjustment coefϐicient that for it to exist, the moments of the 
distribution function must be ϐinite, i.e., the MGF has to be speciϐied. While it is difϐicult 
to apply the exact formula in the general case, for speciϐic distributions (e.g. two-
point, exponential, gamma), exact analytical formulae for the ruin probability can be 
obtained. The following fragment of this article presents a tabular comparison of how 
modifying individual input parameters (i.e. loss distribution parameter(s), safety 
loading coefϐicient and initial surplus) affects the ruin probability for three light-
tailed distributions2: exponential, a mixture of exponential distributions and gamma.

2 The distribution Fx(x) is a light-tailed distribution, if there exist positive a and b such as, for all x ≥ 0 
we have: 1 − Fx(x) ≤ ae–bx. Heavy-tailed distributions are distributions whose tails are not exponen-
tially bounded, i.e. they have thicker tails than the exponential distribution (Rolski 2010).
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Assuming that the amount of a single loss follows an exponential distribution, we 
can take advantage of its so-called “memorylessness” property, which makes the 
distribution of the deϐicit at the time of ruin also exponential (Otto 2008). Then, 
the denominator of formula (11) can be written as a moment-generating function of 
the exponential distribution, and then simplify the formula for the ruin probability. 
Further, by calculating the adjustment coefϐicient for the exponential distribution, 
we obtain an explicit formula for the ruin probability in the classical model over an 
inϐinite time horizon with an exponential loss distribution with parameter β (Otto 
2008):

 . (14)

For the above set of assumptions, the parameters affecting the ruin probability are 
u, θ oraz β, i.e. the initial surplus, the safety loading and the exponential distribution 
parameter respectively. Table 1 shows the ruin probabilities for sample values of 
the above variables.

Table 1. Ruin probability depending on the initial surplus and safety loading coefficient, 
with parameter β = 0.001

u = 0
u = 1000

= μ
u = 5000

= 5μ
u = 10 000

= 10μ
u = 25 000

= 25μ
u = 50 000

= 50μ
u = 100 000

= 100μ

θ = 0.05 0.9524 0.9081 0.7506 0.5916 0.2896 0.0881 0.0081

θ = 0.10 0.9091 0.8301 0.5770 0.3663 0.0937 0.0097 1.02 Ȋ 10–4

θ = 0.15 0.8696 0.7632 0.4530 0.2360 0.0334 0.0013 1.88 Ȋ 10–6

θ = 0.20 0.8333 0.7054 0.3622 0.1574 0.0129 2 Ȋ 10–4 4.81 Ȋ 10–8

θ = 0.25 0.8000 0.6550 0.2943 0.1083 0.0054 3.63 Ȋ 10–5 1.65 Ȋ 10–9

θ = 0.30 0.7692 0.6107 0.2426 0.0765 0.0024 7.5 Ȋ 10–6 7.31 Ȋ 10–11

Source: Own study.

For an exponential distribution with β = 0.001, and therefore an expected value of 
the average loss equal to 1000, in columns one can see how increasing the initial 
surplus lowers the ruin probability. For example, for a value θ = 0.10, initial surplus 
in the amount of the expected value of loss results in ruin with a probability of 
about 83%. Having respectively 5, 10, 25, 50 times the starting capital in relation 
to the value of the expected amount of loss successively reduces the risk of ruin 
to less than 1%. Row by row, this effect (for a ϐixed initial surplus) can be traced 
in relation to the safety loading coefϐicient (the insurance company’s margin). It 
is clear that raising the safety loading reduces the risk of ruin by increasing the 
intensity of premium inϐlows, i.e. a higher slope of the process on the graph between 
consecutive claims on increasing segments.
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For a mixture of two exponential distributions with parameters α, β and weights q, 
1–q respectively, an explicit analytical formula can be obtained using the Laplace 
transform (Burnecki, Mista, Veron 2005a).

 where:

  

(15)

Table 2. Ruin probability depending on the initial surplus and safety loading coefficient 
for a mixture of exponential distributions with parameters α = 0.001, β = 0.000001 
and weights: 0.75; 0.25

u = 104 u = 105 u = 106 u = 107 u = 108

θ = 0.05 0.9518 0.9477 0.9078 0.5907 0.0080

θ = 0.10 0.9080 0.9006 0.8297 0.3653 9.91 Ȋ 10–5

θ = 0.15 0.8681 0.8579 0.7627 0.2351 1.82 Ȋ 10–6

θ = 0.20 0.8315 0.8191 0.7048 0.1567 4.62 Ȋ 10–8

θ = 0.25 0.7979 0.7836 0.6543 0.1077 1.57 Ȋ 10–9

θ = 0.30 0.7669 0.7511 0.6070 0.0761 6.93 Ȋ 10–11

Source: Own study.

The parameters of the exponential distributions used in Table 2 were chosen 
arbitrarily in the above example. A mixture of exponential distributions allows 
much more ϐlexibility in creating distributions, but requires the estimation of more 
parameters (in the two-dimensional case, these would be the two parameters of the 
distributions and their weights). For a mixture of n > 2 exponential distributions, 
it is also possible to derive explicit analytical formulae for the ruin probability 
(in general, this is possible for phase-type distributions). However, they will not 
be presented further here due to the progressive complexity of the formulae and 
the relatively uncommon practical application due to the increasing number of 
parameters.
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Grandell and Segerdahl proved that for losses from a gamma distribution with 
parameters α ≤ 1 and mean equal to 1, the explicit formula for the ruin probability 
takes the following form (Grandell, Segerdahl 1971):

 where:

  (16)

The above integral is calculated numerically. Moreover, from the properties of the 
gamma distribution, we are able to adjust the formula for any mean, and thus liberalize 
the assumption of equality of the two parameters (Burnecki, Miśta, Weron 2005a): 

 . (17)

Modifying both parameters allows obtaining a whole range of distributions with 
different shapes and expected values. Ruin probabilities for sample values are 
presented below:

Table 3. Ruin probability depending on the initial surplus and safety loading coefficient 
for a gamma distribution with parameters α = 0.5, β = 0.0005

u = 0 u = 103 u = 5 Ȋ 103 u = 104 u = 2,5 Ȋ 104 u = 5 Ȋ 104 u = 105

θ = 0.05 0.9524 0.9191 0.8088 0.6907 0.4301 0.1953 0.0403

θ = 0.10 0.9091 0.8495 0.6662 0.4935 0.2008 0.0448 0.0022

θ = 0.15 0.8695 0.7890 0.5575 0.3632 0.1006 0.0118 0.00016

θ = 0.20 0.8333 0.7361 0.4730 0.2743 0.0536 0.0035 0.00001

θ = 0.25 0.8000 0.6894 0.4062 0.2119 0.0301 0.0012 0.000002

θ = 0.30 0.7692 0.6480 0.3527 0.1669 0.0177 0.0004 <10-7

Source: Own study.

The values of the parameters in Table 3 were chosen so that the expected value of 
the loss amount is 1000 – in this way they can be compared in some way with the 
exponential distribution shown in Table 1. An obvious fact from the deϐinition of the 
expected value in the gamma distribution is the observation that simultaneously 
increasing the parameter α and decreasing the parameter β will generate the highest 
possible loss achievable in this class of distributions. Table 4 presents a numerical 
example showing the limit case for the shape parameter α = 1, and scale parameter 
β = 10–7 – resulting in an expected value of loss amount equal to 1 000 000.
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Table 4. Ruin probability depending on the initial surplus and safety loading coefficient 
for a gamma distribution with parameters α = 1, β = 10–7

u = 0 u = 105 u = 106 u = 5 Ȋ 106 u = 107 u = 2 Ȋ 107 u = 5 Ȋ 107

θ = 0.05 0.9524 0.9479 0.9081 0.7506 0.5916 0.3674 0.0881

θ = 0.10 0.9091 0.9009 0.8301 0.5770 0.3663 0.1476 0.00965

θ = 0.15 0.8695 0.8583 0.7632 0.4530 0.2360 0.0640 0.00127

θ = 0.20 0.8333 0.8196 0.7054 0.3622 0.1574 0.0297 0.0002

θ = 0.25 0.8000 0.7842 0.6550 0.2943 0.1083 0.0147 0.00003

θ = 0.30 0.7692 0.7517 0.6107 0.2426 0.0765 0.0076 0.000007

Source: Own study.

2. A comparison of different approximation methods

An overview of selected approximation methods is presented in Table 5. Comparing 
their quality over an inϐinite time horizon can be troublesome due to the lack of 
a reliable benchmark. Explicit formulae for exact probabilities are known only 
in speciϐic cases; in all other cases, reliable evaluation of the results of a given 
approximation is difϐicult because we do not know the actual ruin probabilities. One 
way to deal with this issue is to assume a very long time horizon T, thus imitating 
inϐinity and relying on the results of Monte Carlo simulations, however this will 
still be subject to errors, as well as consuming a lot of computing power. Another 
better alternative is to use the Pollaczek-Khinchin theorem, which uses the notion 
of aggregate loss, allowing the ruin probability to be determined numerically 
(Grandell 2000). The following section will present the results of the various 
approximation methods for different distributions of the loss amount (divided into 
light-tailed and heavy-tailed), along with a discussion and comparison against the 
background of the Pollaczek-Khinchin method. A constant safety loading coefϐicient 
of 0.25 was used in all discussed cases. An overview of used distributions can be 
found in Table 6.
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Table 5. An overview of chosen methods of approximating ruin probability

Type
Approxi-
mation

Formula Description

Di
re

ct
 a

pp
ro

xi
m

at
io

n 
of

 th
e 

ru
in

 
pr

ob
ab

ili
ty

 fu
nc

tio
n

Cr
am

er
-

-L
un

db
er

g 
(a

bb
re

vi
a-

tio
n:

 C
-L

)
General use, especially 
good results for huge initial 
surplus values

Ze
ro Naive method, equal results 

for zero initial surplus

Ex
po

ne
nt

ia
l

Existence of ϐirst three 
ordinary moments: 
μ, μ(2), μ(3) of the loss 
amount distribution, 
no reliance on adjustment 
coefϐicient – applicability to 
heavy-tailed distributions.

Ap
pr

ox
im

at
io

n 
of

 th
e 

co
nd

iti
on

al
 

di
st

ri
bu

tio
n 

of
 th

e 
to

ta
l m

ax
im

um
 lo

ss

Be
ek

m
an

-B
ow

er
s 

(a
bb

re
vi

at
io

n:
  B

-B
)

Existence of ϐirst three 
ordinary moments: 
μ, μ(2), μ(3) of the loss 
amount distribution, no 
reliance on adjustment 
coefϐicient. Large error if 
the fourth moment does 
not exist (although it is 
not formally required for 
the method)

Re
ny

i

Simpliϐied version 
of the B-B approximation. 
Existence of ϐirst three 
ordinary moments: 
μ, μ(2), μ(3) of the loss 
amount distribution
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Type
Approxi-
mation

Formula Description

Ap
pr

ox
im

at
io

n 
of

 su
rp

lu
s p

ro
ce

ss
 g

ro
w

th

De
 V

yl
de

r
Existence of ϐirst three 
ordinary moments: 
μ, μ(2), μ(3) of the loss 
amount distribution, 
no reliance on adjustment 
coefϐicient – applicability 
to heavy-tailed distributions.

4-
ga

m
m

a 
De

 V
yl

de
r

where

and

Existence of ϐirst four 
ordinary moments: 
μ, μ(2), μ(3), μ(4) of the 
loss amount distribution, 
no reliance on adjustment 
coefϐicient – applicability 
to heavy-tailed distribution.

Source: Own study based on Grandell 2000; Tura 2015; Burnecki, Weron, Miśta 2005a.

Table 5 – continued
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Table 6. Overview of chosen probability distributions

Distribu-
tion type

Distribution Parameters Probability density function

Li
gh

t-t
ai

le
d

Exponential β > 0

Mixture of 
exponential 

distributions

Gamma α > 0, β > 0

H
ea

vy
-ta

ile
d

Pareto α > 0, β > 0

Lognormal μ d , σ > 0

Weibull β > 0, 0 < τ < 1

Burr α > 0, σ > 0, τ > 1

Source: Burnecki, Teurle, Wilkowska 2019.

2.1.  Light-tailed distributions – mixture of exponential distributions, 
gamma distribution

Table 7. Ruin probability depending on the initial surplus and approximation method 
for a mixture of exponential distributions with parameters α = 5 Ȋ 10–10, β = 7.5 Ȋ 10–9, 
respective weights: 0.1, 0.9

u = 0 u = 109 u = 5 Ȋ 109 u = 1010 u = 2 Ȋ 1010 u = 5 Ȋ 1010

Exact result 0.8000 0.6313 0.3605 0.1791 0.0442 6.64 Ȋ 10–4

Cramer – Lundberg 0.7257 0.6309 0.3604 0.1791 0.0442 6.64 Ȋ 10–4

Zero 0.8000 0.6955 0.3974 0.1974 0.0487 7.32 Ȋ 10–4

Exponential 0.7849 0.6784 0.3788 0.1828 0.0426 5.38 Ȋ 10–4

Beekman – Bowers 0.8000 0.6560 0.3540 0.1738 0.0442 8.17 Ȋ 10–4

Renyi 0.8000 0.6859 0.3707 0.1718 0.0369 3.65 Ȋ 10–4

De Vylder
(4-gamma) 0.7434 0.6364 0.3604 0.1789 0.0442 6.65 Ȋ 10–4

Source: Own study.
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Table 8. Relative error for the data in Table 7 (%)

u = 0 u = 109 u = 5 Ȋ 109 u = 1010 u = 2 Ȋ 1010 u = 5 Ȋ 1010

Exact result 0 0 0 0 0 0

Cramer – Lundberg -9.29 -0.06 -0.02 <-0.01 <-0.01 <-0.01

Zero 0 10.18 10.24 10.24 10.24 10.24

Exponential -1.89 7.47 5.07 2.07 -3.68 -19.06

Beekman – Bowers 0 3.92 -1.81 -2.94 -1.68 22.96

Renyi 0 8.66 2.83 -4.08 -16.55 -45.04

De Vylder
(4-gamma) -7.07 0.82 -0.02 0.08 <-0.01 -0.02

Source: Own study.

For the given parameters, the expected value of the distribution is: 

EY = 
0.10––––––––––5 Ȋ 10–10  + 

0.90–––––––––––7.5 Ȋ 10–9  = 3.2 Ȋ 108. 

The range of initial surplus thus corresponds to a range of approximately: 3–150 ti-
mes the amount of a single loss with arbitrary points representing the capital of the 
insurance company, where a noticeable decrease in consecutive ruin probabilities 
is successively recorded. The analysis of the acceptable relative error for different 
levels of initial surplus remains subjective – its sensitivity is variable and depends 
on the results of the absolute ruin probability – when it is small (less than 1%), then 
it is very easy to have relatively large deviations. Analysing Table 7 and 8, several 
conclusions can be drawn: apart from zero initial surplus, the Cramer-Lundberg 
and 4-gamma De Vylder approximations gave excellent results, with a relative error 
not exceeding 1% in either direction. In case of the C-L approximation, it is known 
to converge monotonically from the left to the exact result, so it will always mini-
mally underestimate the actual results which may allow the use of a scaling factor 
(especially for low values of initial surplus) to get even closer to the real probability. 
For large values of initial surplus, the method is deϐinitely unbeatable for a mixture 
of exponential distributions. Of the methods based on the conditional distribution 
of the total maximum loss, the Beekman-Bowers approximation also gives very sa-
tisfactory results, in each case beating its simpliϐied version – the Renyi approxi-
mation. The Zero method, unlike the Lundberg approximation, gives an accurate 
result with zero initial surplus, with a consistent increase in error that seems to 
converge to a speciϐic value. The possibility to estimate the maximum possible error 
of a given technique is also useful information, so this method – despite its relatively 
large deviations – can provide an interesting reference point with other parameter 
values.
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Table 9. Ruin probability depending on the initial surplus and approximation method 
with parameters α = 0.25, β = 0.000003

u = 0 u = 106 u = 2 Ȋ 106 u = 3 Ȋ 106 u = 4 Ȋ 106 u = 5 Ȋ 106

Exact result 0.8 0.3038 0.1212 0.0484 0.0193 7.71 Ȋ 10–3

Cramer – Lundberg 0.7602 0.3035 0.1212 0.0484 0.0193 7.71 Ȋ 10–3

Zero 0.8 0.3194 0.1275 0.0509 0.0203 8.12 Ȋ 10–3

Exponential 0.8110 0.3141 0.1216 0.0471 0.0182 7.06 Ȋ 10–3

Beekman – Bowers 0.8 0.3018 0.1200 0.0483 0.0195 7.91 Ȋ 10–3

Renyi 0.8 0.3063 0.1173 0.0449 0.0172 6.58 Ȋ 10–3

De Vylder
(4-gamma) 0.8 0.3038 0.1212 0.0484 0.0193 7.71 Ȋ 10–3

Source: Own study.

Table 10. Relative error for the data in Table 9 (%)

u = 0 u = 106 u = 2 Ȋ 106 u = 3 Ȋ 106 u = 4 Ȋ 106 u = 5 Ȋ 106

Exact result 0 0 0 0 0 0

Cramer – Lundberg -4.98 -0.08 <-0.01 <-0.01 <-0.01 <-0.01

Zero 0 5.15 5.23 5.23 5.24 5.24

Exponential 1.38 3.40 0.37 -2.65 -5.57 -8.41

Beekman – Bowers 0 -0.64 -0.95 -0.24 1.00 2.59

Renyi 0 0.84 -3.22 -7.18 -10.98 -14.76

De Vylder
(4-gamma) 0 0 0 0 0 0

Source: Own study.

For the gamma distribution with parameters used in Tables 9 and 10, the expected 
value of the loss amount is 

EY = 
0.25––––––––––3 Ȋ 10–6   = 83 333. (3),

which, with the initial surplus values used, gives a range: 12–60 times the value 
of a single loss. The unbeatable method in this case is De Vylder 4-gamma 
approximation, because with the loss amount following a gamma distribution 
we get exactly the same values – the new process approximated by the gamma 
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distribution is in fact a gamma distribution from the very beginning, so the obvious 
(and expected) conclusion is to obtain equality. The other approximations behave 
very similarly to the mixture of exponential distributions – great approximations are 
again obtained by the C-L method, the error obtained with the Zero approximation 
has almost decreased by half, the B-B approximation also performs very well, still 
being better than the Renyi approximation for any initial surplus value. When the 
actual ruin probability is greater than 2%, basically all methods give acceptable 
results, with rare cases of a relative error of more than 5% – this being the case 
only for the Renyi approximation (where in case of a loss amount given by a gamma 
distribution it is recommended to use the B-B method) and the Zero method, which 
however is subject to a consistent overestimation error, possible to be corrected by 
an appropriate scaling factor due to the convergence of the error with increasing 
initial surplus.

2.2.  Heavy-tailed distributions – Pareto distribution, 
lognormal distribution, Weibull distribution, Burr distribution

In case of heavy-tailed distributions, the scheme for presenting information 
remains identical, but the reference point is changed to the Pollaczek-Khinchin 
method, due to the lack of analytical formulae and the inability to determine the 
exact ruin probability. To generate results using this technique, 50 blocks of 50 000 
simulations (2 500 000 simulations in total) were used in each of the discussed loss 
amount distributions.

Table 11. Ruin probability depending on the initial surplus and approximation method 
for the Pareto distribution with parameters α = 4.2, β = 109

u = 0 u = 109 u = 2 Ȋ 109 u = 5 Ȋ 109 u = 1010 u = 2 Ȋ 1010

Pollaczek – Khinchin 0.8 0.4805 0.3115 0.095 0.0158 8.34 Ȋ 10–4

Exponential 0.7575 0.5092 0.3422 0.1039 0.0142 2.68 Ȋ 10–4

Beekman – Bowers 0.8 0.4694 0.3104 0.1000 0.0168 5.36 Ȋ 10–4

Renyi 0.8 0.5152 0.3318 0.0886 0.0010 1.21 Ȋ 10–4

De Vylder (4-gamma) 0.721 0.4680 0.3192 0.1036 0.0160 3.83 Ȋ 10–4

Source: Own study.
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Table 12. Relative error for the data in Table 11 (%)

u = 0 u = 109 u = 2 Ȋ 109 u = 5 Ȋ 109 u = 1010 u = 2 Ȋ 1010

Pollaczek – Khinchin 0 0 0 0 0 0

Exponential -5.31 5.98 9.88 9.38 -9.75 -67.80

Beekman – Bowers <0.01 -2.30 -0.33 5.20 6.56 -35.68

Renyi <0.01 7.24 6.53 -6.71 -37.83 -85.53

De Vylder (4-gamma) -9.87 -2.60 2.48 9.06 1.35 -54.09

Source: Own study.

Tables 11 and 12 analyse an example of a Pareto distribution with parameter values: 
α = 4.2, β = 109 the expected value of the loss amount was 

EY = 
4.2 Ȋ 109

––––––––––4.2 – 1  = 1.31 Ȋ 109.

The C-L and Zero methods are not usable due to the fact that the MGF does not exist; 
the 4-gamma De Vylder, on the other hand, requires a ϐinite fourth moment, hence the 
usage of values above 4 for the shape parameter. The best-looking approximation is 
the B-B method, which for single-digit ruin probability values only slightly exceeds 
the 5% error tolerance. 4-gamma De Vylder method also performs satisfactorily. 
In a comparative analysis with light-tailed distributions, the relative error at low 
ruin probabilities increases very signiϐicantly. Moreover, due to the unavailability 
of the C-L method, we do not have the tools to eliminate (at least asymptotically) 
the estimation error. Therefore, considering the need to study ruin at a very high 
probability quantile (e.g., for Solvency II at 99.5%), the only reliable indicator for 
the loss amount given by the Pareto distribution is the Pollaczek-Khinchin method, 
followed (most likely) by the B-B approximation. 

Table 13. Ruin probability depending on the initial surplus and approximation method 
for the lognormal distribution with parameters μ = 19, σ = 1.03

u = 0 u = 109 u = 2 Ȋ 109 u = 5 Ȋ 109 u = 1010 u = 2 Ȋ 1010

Pollaczek – Khinchin 0.7995 0.4631 0.2979 0.0907 0.0154 8.59 Ȋ 10–4

Exponential 0.7511 0.4998 0.3327 0.0980 0.0128 2.18 Ȋ 10–4

Beekman – Bowers 0.8 0.4576 0.2994 0.0944 0.0155 4.72 Ȋ 10–4

Renyi 0.8 0.5068 0.3211 0.0817 0.0083 8.69 Ȋ 10–4

De Vylder (4-gamma) 0.7119 0.4568 0.3090 0.0980 0.0146 3.24 Ȋ 10–4

Source: Own study.
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Table 14. Relative error for the data in Table 13 (%)

u = 0 u = 109 u = 2 Ȋ 109 u = 5 Ȋ 109 u = 1010 u = 2 Ȋ 1010

Pollaczek – Khinchin 0 0 0 0 0 0

Exponential -6.06 8.32 11.67 8.11 -16.74 -74.57

Beekman – Bowers 0.06 -1.19 0.52 4.03 0.68 -44.94

Renyi 0.06 9.44 7.80 -9.97 -45.79 -89.88

De Vylder (4-gamma) -10.95 -1.36 3.72 8.07 -5.11 -62.28

Source: Own study.

In the analyzed lognormal distribution example, the parameters are: μ = 19, σ = 1.03, 
which gives an expected value approximately equal to: EY ≈ 3 Ȋ 108. A comparison of 
the results in Table 13 and 14 generally leads to similar conclusions as for the Pareto 
distribution. The best method still seems to be the B-B approximation, which for 
ruin probability in the interval of 2–80% gives very stable and satisfactory results, 
with a relative error of no more than 5%. The four-moment gamma De Vylder 
method still performs satisfactorily, although just slightly less so. Once again, it can 
be seen that it underestimates the probabilities at the beginning of the range of 
initial surplus volatility. This is not a critical ϐlaw, however, given that the strict focus 
is on low values of ruin probability – and setting the level of premiums that allows 
bankruptcy to occur at a very low but realistic and acceptable level. Exponential 
approximation and Renyi seem to yield similar results, with several times the error 
of the best methods in the example (B-B and De Vylder 4-gamma). As with the 
Pareto distribution, at the very tail of the distribution, for ruin probabilities of the 
order of the fourth decimal place, all methods record a signiϐicant relative error, 
consistently underestimating the real risk of bankruptcy. From a prudential point 
of view, therefore, they should not be an alternative to the indications obtained by 
the Pollaczek-Khinchin method, and possible only provide additional information. 

Table 15. Ruin probability depending on the initial surplus and approximation method 
for the Weibull distribution with parameters β = 1, τ = 0.5

u = 0 u = 5 u = 10 u = 25 u = 50 u = 100

Pollaczek – Khinchin 0.8001 0.4854 0.2945 0.0658 0.0054 3.68 Ȋ 10–5

Exponential 0.8323 0.4997 0.3000 0.0649 0.0050 3.07 Ȋ 10–5

Beekman – Bowers 0.8 0.4852 0.2943 0.0657 0.0054 3.63 Ȋ 10–5

Renyi 0.8 0.4852 0.2943 0.0657 0.0054 3.63 Ȋ 10–5

De Vylder (4-gamma) 0.8 0.4852 0.2943 0.0657 0.0054 3.63 Ȋ 10–5

Source: Own study.
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Table 16. Relative error for the data in Table 15 (%)

u = 0 u = 5 u = 10 u = 25 u = 50 u = 100

Pollaczek – Khinchin 0 0 0 0 0 0

Exponential 4.03 2.93 1.85 -1.33 -5.59 -16.46

Beekman – Bowers -0.01 -0.04 -0.06 -0.15 0.59 -1.32

Renyi -0.01 -0.04 -0.06 -0.15 0.59 -1.32

De Vylder (4-gamma) -0.01 -0.04 -0.06 -0.15 0.59 -1.32

Source: Own study.

The Weibull distribution has a heavy tail when the shape parameter is in the interval 
(0, 1). In the considered example, the parameters of the distributions are: β = 1 and 
τ = 0.5, which gives an expected value equal to 2. The summary of results in Tables 15 
and 16 strongly suggests that in principle all the discussed approximation methods 
are acceptable for use. The B-B, Renyi and De Vylder methods give almost exact 
results, the relative error for them is practically minimal, moreover, no signiϐicant 
differences can be seen between any of the aforementioned techniques. Exponential 
approximation also estimates the probability very well against the results obtained 
with the Pollaczek-Khinchin algorithm. The relative error increases above the 
arbitrary threshold of 5% only for ruin probabilities of the order of the third 
decimal place. Moreover, all of the presented methods performed much better than 
the light-tailed distributions, which raises the question of a possible reason for this 
phenomenon. The answer may lie in the similarity between the Weibull distribution 
and the exponential distribution with the parameters used in the tables. The Weibull 
distribution, depending on the assumed shape parameter λ, allows a wide range of 
distributions: similar to normal (for large λ), for λ = 1 it reducees to an exponential 
distribution, and for λ < 1, we get a thicker tail than in the exponential case, but 
still the overall shape and behavior of the distribution is strongly related to that of 
the exponential distribution. All approximation methods seek, to some extent, to 
make the loss amount distribution similar to the exponential distribution or to ϐit 
an appropriate number of moments, so intuitively increasing similarity suggests 
better approximation results. It is worth to note that the noticeable differences 
occur even though formally the Weibull distribution with k = 0.5 is a heavy-tailed 
distribution, which should inherently be more difϐicult to estimate than any light-
tailed distribution. 

The last discussed distribution will be the Burr distribution with parameters:  α > 0, 
σ > 0, τ > 0. The family of Burr distributions is a ϐlexible group of distributions with 
heavy tails. To use methods based on third and fourth moments, it is necessary that 
the product α Ȋ σ is greater than 4. In the analyzed example, the values are:  α = 2.5; 
σ = 1.65; τ = 8.



41

Safe Bank  1(90) 2023 Problems and Opinions

Table 17. Ruin probability depending on the initial surplus and approximation method 
for the Burr distribution with parameters α = 2.5, σ =1.65, τ = 8

u = 0 u = 5 u = 10 u = 25 u = 50 u = 100

Pollaczek – Khinchin 0.8000 0.4785 0.2933 0.0725 8.03 Ȋ 10–3 2.08 Ȋ 10–4

Exponential 0.8014 0.4984 0.3100 0.0746 6.94 Ȋ 10–3 6.02 Ȋ 10–5

Beekman – Bowers 0.8000 0.4740 0.2951 0.0748 7.99 Ȋ 10–3 9.59 Ȋ 10–5

Renyi 0.8000 0.4911 0.3015 0.0670 6.08 Ȋ 10–3 4.62 Ȋ 10–5

De Vylder (4-gamma) 0.7616 0.4757 0.3001 0.0756 7.58 Ȋ 10–3 7.64 Ȋ 10–5

Source: Own study.

Table 18. Relative error for the data in Table 17 (%)

u = 0 u = 5 u = 10 u = 25 u = 50 u = 100

Pollaczek – Khinchin 0 0 0 0 0 0

Exponential 0.17 4.17 5.71 2.95 -13.51 -71.02

Beekman – Bowers <-0.01 -0.93 0.64 3.27 -0.51 -53.80

Renyi <-0.01 2.64 2.81 -3.73 -24.24 -77.73

De Vylder (4-gamma) -4.81 -0.59 2.34 4.27 -5.53 -63.19

Source: Own study.

The results shown in Tables 17 and 18 seem consistent with other results obtained 
so far. They are not as spectacular as in the case of the Weibull distribution, but 
are nevertheless still within acceptable tolerance thresholds, and show better 
properties than in the case of, e.g. Pareto or lognormal distributions. Once again, the 
B-B approximation yields the closest results to reality, conϐirming why it is thought 
to be the “best of the simplest” ruin probability approximations. In addition to its 
very satisfactory results, its application is not limited to light-tailed distributions, 
so moving onto the collective drawing of conclusions based on all analyzed 
distributions, it seems to be the method recommended for use in the ϐirst place 
(if only possible due to a ϐinite third moment). Slightly lower in the recommendation 
are the De Vylder and Renyi approximations, with a numerical advantage for the 
former, although it should be remembered that, relative to Renyi, it requires the 
existence of two more moments (third and fourth) and therefore its use is subject 
to additional conditions on the distribution of the loss amount.

For certain applications, in particular a light-tailed distribution and high initial 
surplus (compared to the expected value of a single loss), the C-L approximation gives 
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best results. An additional advantage of this method is the deterministic knowledge 
of the direction of the error. While in practice a high initial surplus is an assumption 
that is very often satisϐied, the lack of applicability for heavy-tailed distributions 
is a rather serious shortcoming of this approximation. Nevertheless, it should be 
noted that (with a few exceptions) most of the methods gave decent results, at least 
for fairly reasonable limits of variability of the actual ruin probability, not exceeding 
2–5%. From a reporting point of view, however, this is too low a conϐidence level, 
and further increasing quantiles inevitably reduces the ability to control the relative 
error with almost all approximations.  

Finally, it is also worth referring to the results of similar analyses of the quality of 
approximation methods for ruin probability (Grandel, Segerdahl 1971) (Grandell 
2000) (Burnecki, Miśta, Weron 2005a). The analyses indicate a relatively high 
quality of ϐit of De Vylder and Beekman-Bowers approximations, which is consistent 
with the conclusions drawn in this article. More attention has also been paid to 
the De Vylder approximation in (Burnecki, Miśta, Weron 2005b), presenting the 
approximation method based on the ϐirst four moments as an improvement over the 
traditional version. The version based on four moments was also used in this article. 
An extensive comparison of approximation methods was also made in (Burnecki, 
Miśta, Weron 2005c), where the use of the De Vylder approximation (including 
the version based on four moments), in addition to the Beekman-Bowers, among 
others, led to the relatively smallest errors. In this context, the results obtained in 
this article remain consistent with those obtained previously by other researchers.

2.3. Assessment of the feasibility of using different approximation methods

The article presents various methods of approximating the ruin probability and 
analyzes the quality of these approximations. The possibility of their use by insurance 
companies in their operations remains a separate issue. One area of application 
is pricing, where the insurance premium is deϐined in such a way that the ruin 
probability does not exceed a set level. Having at its disposal assumptions about the 
process of occurrence of claims (both the distribution of the number of claims over 
a period of time and the distribution of single loss amount), an insurance company 
can use the proposed approximation methods to set the premium associated with 
a ϐixed ruin probability as precisely as possible. The quality of the ϐit plays a key 
role here, as underestimating the ruin probability can lead to insolvency of the 
company, while overestimating reduces competitive advantage. Of course, due to the 
multiplicity of insurance products, the volatility of economic conditions, customer 
behavior, regulatory restrictions and a number of other factors, the applicability 
of ruin theory may be limited. Nevertheless, the practical usefulness of this type of 
analysis may arise in comparative analysis, e.g. at certain stages of the development 
of an insurance offering, when comparing different variants of a potential offering. 
The second area of application of approximation methods is the estimation of the 
ruin probability for an existing portfolio of insurance contracts. A high value of 
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this probability may mean that the company is exposed to excessive insurance risk 
and may consider taking measures to reduce this risk (such as reinsurance). The 
application of ruin theory and the De Vylder approximation to a two-dimensional 
model (including reinsurance) is further discussed by K. Burnecki, M. Teuerle and 
A. Wilkowska (Burnecki, Teuerle, Wilkowska 2019). Ruin theory can also be used to 
optimize dividend payment policy and more broadly in the context of the Solvency II 
regime (Loisel, Gerber 2012). In this context, the model can be redeϐined so that 
ruin occurs when the SCR coverage ratio (ratio of own funds to the solvency capital 
requirement) falls below 100%. Although this does not mean bankruptcy for the 
insurance company, it is an unfavorable situation, as the company does not have 
sufϐicient funds to ensure that the probability of insolvency over a one-year horizon 
remains below 0.5%.

Regardless of the purpose of an insurance company, it may not be possible to 
accurately determine the ruin probability and therefore it is necessary to use 
approximations. For light-tailed distributions, a good quality ϐit for low values of 
ruin probability is obtained when using the Cramer-Lundberg approximation or 
the De Vylder approximation. For heavy-tailed distributions, the Beekman-Bowers 
approximation turns out to be better. The company’s decision on the appropriate 
method will therefore depend on whether it expects a light-tailed or a heavy-tailed 
distribution for a particular insurance contract. The parameters necessary to apply 
the approximation, in particular the moments of the distribution of the loss amount, 
can be estimated from historical data. Determining the limiting ruin probability 
also remains an important issue. A level of 0.5% may be a fairly natural choice, as it 
corresponds to the Solvency II Directive’s method of calculating the Solvency Capital 
Requirement (SCR). However, it should be noted that this requirement corresponds 
to the value at risk for the entire company over a one-year horizon, which is not 
consistent wit estimating the ruin probability for a speciϐic group of contracts over 
an inϐinite time horizon. However, one can consider using an approximation to 
estimate the probability of ruin over a ϐinite horizon, such as one year. It is also 
possible, as noted earlier, to use a model in which ruin means that the SCR coverage 
ratio falls below 100%, which will allow the insurance company to make some kind 
of a projection of the Solvency II regime’s requirements into the future and answer 
the question of what the risk of not meeting the SCR coverage ratio requirement is 
in the long term.

Conclusion

This paper presents the theoretical basis of ruin theory, the classical model and 
exact results for selected probability distributions of single loss amount (where ruin 
probability can be determined analytically), and analyzes the quality of available 
approximation methods for selected distributions (both light- and heavy-tailed) 
depending on the values of the parameters describing the surplus process. 
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The quality of approximation is affected by a number of factors, one of the key 
ones under the control of the insurance company being the level of initial surplus. 
Depending on this level, the quality of approximation methods, measured as the 
difference between the estimated and actual ruin probabilities, can vary (as the 
amount of initial surplus increases, absolute approximation errors decrease, which 
is associated with a decrease in the ruin probability, however relative errors tend 
to increase). In the case of light-tailed distributions, the lowest relative estimation 
errors were observed for the Cramer-Lundberg approximation (which, compared 
to the other considered methods, can be considered relatively simpliϐied) and 
the De Vylder approximation (which has the most complex form among the 
analyzed approximation methods). For heavy-tailed distributions, the Beekman-
Bowers approximation has the advantage, although relatively low errors were 
also observed for the De Vylder approximation. Overall, these methods are fairly 
good approximations of the actual ruin probability and can be successfully used in 
insurance company calculations.

Although ruin theory is primarily a theoretical concept that facilitates the 
understanding of the risks faced by an insurance company, it can be applied to 
the quantiϐication of risk for risk management purposes, and can also be used as 
a supporting tool in the calculation of insurance premiums (where the goal is to set 
the premium at such a level that the ruin probability does not exceed a set critical 
value). It is also impossible to ignore the peculiar interactions between ruin theory 
and the requirements of the Solvency II regime. When deϐining ruin as a situation 
in which the SCR coverage ratio falls below 100%, the insurance company is given 
an interesting tool for analyzing solvency over a long-time horizon (going beyond 
the one-year framework deϐined in the calculation of the SCR). In all these areas, an 
exact calculation of the ruin probability may not be possible, and approximations 
may be necessary. The theory can also be applied to non-insurance areas, such as 
option pricing (Gerber, Shiu 1999). Understanding ruin approximation methods, 
their quality and limitations allows ruin theory to be used more effectively to 
analyze actual claims processes in an insurance company and in other areas where 
the theory is applicable. 
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